edexcel

Mark Scheme (Final)
Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everyw here
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042726
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d...or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- ■ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as $A \mathrm{ft}$, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

June 2015
 WST03 Statistics 3 Mark Scheme

Question Number	Scheme							Marks
3. (a)	$\hat{\lambda}=\frac{0(47)+1(57)+2(46)+3(35)+4(9)+5(6)}{200}=\frac{320}{200}=1.6 * \quad \begin{aligned} & \text { Full exp' or at least } 2 \\ & \text { products and } 320 / 200 \text { seen } \end{aligned}$							B1 *
(b)	$\begin{aligned} & r=200 \times \frac{\mathrm{e}^{-1 .}}{} \\ & s=200-(40 \\ & r=51.68550 \end{aligned}$	$\begin{array}{lr} s=200-(40.38+64.61+\text { their } r+27.57+11.03) & \{=4.72449139 \ldots\} \\ r=51.68550861 \ldots \text { and } s=4.72449139 \ldots & r=\text { awrt } \mathbf{5 1 . 6 9} \text { and } s=\text { awrt } 4.72 \end{array}$						M1 M1 A1
(c)	H_{0} : Poisson (distribution) is a suitable/ sensible (model) H_{1} : Poisson (distribution)is not a suitable/ sensible (model).							B1
	Number of accidents	Observed	Expected	Combined Observed	Combined Expected	$\frac{(O-E)^{2}}{E}$	$\frac{O^{2}}{E}$	
	0	47	40.38	47	40.38	1.0853	54.7053	
	1	57	64.61	57	64.61	0.8963	50.2863	
	2	46	51.69	46	51.69	0.6264	40.9364	
	3	35	27.57	35	27.57	2.0024	44.4324	
	4	9	11.03					
	$\geqslant 5$	6	4.72	15	5.7	0.0357	14.2857	M1
					Totals	4.6461	204.6461	
	$\begin{array}{lr} \mathrm{X}^{2}=\sum \frac{(O-E)^{2}}{E} \text { or } \sum \frac{O^{2}}{E}-200 ;=4.6461 & \text { awrt } 4.65 \\ v=5-1-1=3 \\ \chi_{3}^{2}(0.10)=6.251 \Rightarrow \mathrm{CR}: \mathrm{X}^{2} \geqslant 6.251 & \mathbf{3} \end{array}$ [Since $X^{2}=4.6461$ does not lie in the $C R$, then there is insufficient evidence to reject H_{0}] The number of accidents per day can be modelled by a Poisson distribution or the supervisor's belief is correct.							M1; A1 B1 ft B1 ft A1 ft (Total 11)
	Notes							
(b)(c)	Note: Allow A1 for $s=$ awrt 4.74 (found as a result of using expected values to full accuracy.) $1^{\text {st }} \mathrm{B} 1$: for both hypotheses and mentioning Poisson at least once. Allow Poisson is a "good fit/model" but not "good method" Inclusion of 1.6 for mean in hypotheses is B0 but condone in conclusion. $1^{\text {st }} \mathrm{M} 1$: For an attempt to pool 4 accidents and $\geqslant 5$ accidents or pool when $E_{i}<5$ No pooling is M0 $2^{\text {nd }}$ M1: For an attempt at the test statistic, at least 2 correct expressions/values (to awrt 2 d.p.) $1^{\text {st }} \mathrm{A} 1$: For awrt 4.65 (score M1M1A1 if awrt 4.65 seen) If no pooling can allow $2^{\text {nd }} \mathrm{M} 1$ if $\mathrm{X}^{2}=5.33$ is seen $2^{\text {nd }}$ B1ft: For $n-1-1$ i.e. subtracting 2 from their n. B1B1 may be implied by $3^{\text {rd }} \mathrm{B} 1 \mathrm{ft}$: For a correct ft for their $\chi_{k}^{2}(0.10)$, where $k=n-1-1$ from their n. 6.251 (if pooling) or 7.779 for no pooling $2^{\text {nd }}$ A1ft: (Dep. on the $2^{\text {nd }}$ M1) For correct comment in context based on their test statistic and their critical value that mentions accidents or supervisor. Condone mention of $\mathrm{Po}(1.6)$ in conclusion Score A0 for inconsistencies e.g. "significant" followed by "supervisor's belief is justified" Note: Full accuracy gives a combined expected frequency of 15.76, $\frac{(O-E)^{2}}{E}=0.0366, \frac{O^{2}}{E}=14.2766$, $X^{2}=4.64855 \ldots$ and p-value 0.199							

Question Number	Scheme	Marks
6. (a)	$\begin{align*} & \left\{\hat{\mu}=\frac{\sum x}{n}=\frac{1570}{50}=\right\} \bar{x}=31.4 \\ & \left\{\begin{aligned} \left\{\hat{\sigma}^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}=\right\} s_{x}^{2} & =\frac{49467.58-50(31.4)^{2}}{50-1} \\ & =3.460816 \ldots \end{aligned}\right. \end{align*}$	B1 cao M1 A1ft A1
(b)	[Let $Y=$ time taken to complete obstacle course in the afternoon.] $\begin{aligned} & \mathrm{H}_{0}: \mu_{x}=\mu_{y}, \mathrm{H}_{1}: \mu_{x}>\mu_{y} \\ & (z=) \frac{" 31.4 "-30.9}{\sqrt{\frac{" 3.46 "}{50}+\frac{3.03}{50}}} \end{aligned}$ $=1.38781 \ldots$ CR: $Z \geqslant 1.6449$ or probability $=$ awrt 0.082 or awrt 0.083 awrt 1.39 CR: $Z \geqslant 1.6449$ or probability $=$ awrt 0.082 or awrt 0.083 1.6449 or better Since $z=1.38781 \ldots$ does not lie in the CR, then there is insufficient evidence to reject H_{0} Conclude that the mean time to complete the obstacle course is the same for the early morning and late afternoon.	B1 M1 A1ft A1 B1 M1 A1
(c)	\bar{X} and \bar{Y} are both approx. normally distributed or $\bar{X}-\bar{Y}$ normal (Condone \bar{x} and \bar{y})	B1
(d)	Have assumed $s^{2} \simeq \sigma^{2}$ or variance of sample \simeq variance of population	B1 [1] (Total 13)
	Notes	
(a)	```B1: \(\quad 31.4\) cao Allow 31 minutes, 24 seconds. \(1^{\text {st }}\) M1: A correct expression for either \(s\) or \(s^{2}\) (ignore label) \(1^{\text {st }}\) A1ft: A correct expression for \(s^{2}\) with their \(\mathrm{ft} \bar{x}\). \(3^{\text {rd }} \mathrm{A} 1\) : awrt 3.46 (Correct answer scores 3 out of 3)```	
(b)	$1^{\text {st }}$ B1: Both hypotheses stated correctly, with some indication of which μ is which. $1^{\text {st }}$ M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 3 of a, b, c or d correct. Allow \pm	
	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}:$ for $\pm \frac{\text { their } 31.4-30.9}{\sqrt{\frac{\text { their } 3.46}{50}+\frac{3.03}{50}}}$ Allow $D=\bar{x}-\bar{y} \quad 1.64 \sim 1.65=\frac{D-0}{\sqrt{\frac{{ }^{3.46 "}}{50}+\frac{3.03}{50}}}[\mathrm{SE}=0.360277 .$. $2^{\text {nd }} \mathrm{A} 1$: for awrt 1.39 (possibly \pm)(Allow for $\mathrm{CV} D=$ awrt 0.593) ($\mathrm{NB} d=0.5$) Correct answer scores M1A1ftA1 but $0-(31.4-30.9) \rightarrow-1.39$ loses this $2^{\text {nd }} A$ mark $2^{\text {nd }} \mathrm{B} 1$: Critical value of 1.6449 or better (seen). Allow for probability $=$ awrt 0.082 or awrt 0.083 Note: p-values are 0.0823 (tables) and 0.0826 (calculator). $2^{\text {nd }}$ M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H_{0} ". $3^{\text {rd }} \mathrm{A} 1$: For a correct statement in context that accepts H_{0} (no ft) Condone "no difference in mean times" Must mention "mean time", "morning" and "afternoon" or "both times of day"	
(c)	B1 E.g. $\bar{X} \sim \mathrm{~N}(\ldots$.$) need both. Allow in words e.g "sample means are normally distributed"$	
(d)	B1 condone only mentioning " x " or " y " but watch out for $s_{x}=s_{y}$ or $\sigma_{x}=\sigma_{y}$ which scores B0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 7.
(a)

(b) \& \begin{tabular}{l}
Let $X=$ score on a die
$$
\mathrm{E}(S)=3.5, \quad \operatorname{Var}(S)=\frac{35}{12}
$$
$$
\mathrm{E}(S)=\mathbf{3 . 5}
$$

$\operatorname{Var}(S)=\frac{35}{12}$ or awrt 2.92

So, $\bar{S} \sim \mathrm{~N}\left(" 3.5 ", \frac{"\left(\frac{35}{12}\right) "}{40}\right)$ or $\bar{S} \sim \mathrm{~N}\left(" 3.5 ", \frac{7}{96}\right)$
$$
\begin{gathered}
\mathrm{P}(\bar{S}<3)=\mathrm{P}\left(Z<\frac{3-" 3.5 "}{\sqrt{\frac{7}{96}}}\right)\{=\mathrm{P}(Z<-1.85164 \ldots)\} \\
\{=1-0.9678\}=0.0322
\end{gathered}
$$

 \&

B1

B1

[2]

B1ft

M1

A1

[3]

(Total 5)
\end{tabular}

\hline \& \multicolumn{2}{|l|}{Notes}

\hline (a)

(b) \& | $2^{\text {nd }}$ B1 allow awrt 2.92 |
| :--- |
| B1ft for $\bar{S} \sim \mathrm{~N}\left(" 3.5 ", \frac{"\left(\frac{35}{12}\right) "}{40}\right)$ seen or implied. Follow through their $\mathrm{E}(S)$ and their $\operatorname{Var}(S)$ NB $\frac{7}{96}=0.07291 \dot{6}$ accept awrt 0.0729 |
| M1 for an attempt to standardise with 3, their mean (>3) and $\sqrt{\frac{\text { their } \operatorname{Var}(S)}{40}}$. Must lead to P |
| A1 for $0.032 \sim 0.0322$ | \& < - ve)

\hline ALT 5 S \& \multicolumn{2}{|l|}{B1ft for $\sum S \sim \mathrm{~N}\left(140, \frac{350}{3}\right)$ where 140 is $40 \times$ their $\mathrm{E}(S)$ and variance is $40 \times$ their $\operatorname{Var}(S)$ M1 for $\mathrm{P}\left(Z<\frac{120-" 140 "}{\sqrt{\frac{350}{3}}}\right)$ or $\mathrm{P}\left(Z<\frac{119.5-" 140 "}{\sqrt{\frac{350}{3}}}\right)\{=\mathrm{P}(Z<-1.8979 \ldots)\}$ A1 for $0.032 \sim 0.0322$ or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).}

\hline
\end{tabular}

Question Number	Scheme	Marks
8. (a)	$\begin{array}{lr} \left\{\bar{x}=\frac{29.74+31.86}{2}\right\} \Rightarrow \bar{x}=30.8 & \begin{array}{c} \bar{x}=30.8 \\ \text { (1.96" }\left(\frac{\sigma}{\sqrt{n}}\right)=31.86-30.8 \end{array} \text { or } 2(" 1.96 ")\left(\frac{\sigma}{\sqrt{n}}\right)=31.86-29.74 \\ \mathrm{SE}_{\bar{x}}=\frac{31.86-30.8}{1.96}=0.540816 \ldots=0.54(2 \mathrm{dp}) & \text { This can be implied. See note. } \end{array}$	B1 M1 A1
(b)	$\begin{array}{lr} \text { A } 90 \% \mathrm{CI} \text { for } \mu \text { is } \bar{x} \pm 1.6449\left(\frac{\sigma}{\sqrt{n}}\right) & \\ =30.8 \pm 1.6449(0.54) & (\text { their } \bar{x}) \pm(\text { their } z)\left(\text { their } \mathrm{SE}_{\bar{x}} \text { from (a) }\right) \\ =(29.91,31.69) & \text { (awrt 29.9, awrt 31.7) } \end{array}$	B1 M1 A1
(c)	Let $X=$ number of confidence intervals containing μ or $Y=$ number of confidence intervals not containing μ So $X \sim \operatorname{Bin}(4,0.9)$ or $Y \sim \operatorname{Bin}(4,0.1)$ $\begin{array}{rlr} \mathrm{P}(X \geqslant 3) \text { or } \mathrm{P}(Y \leqslant 1) & ={ }^{4} C_{3}(0.9)^{3}(0.1)+(0.9)^{4} & { }^{4} C_{3}(0.9)^{3}(0.1)+(0.9)^{4} \\ & =0.2916+0.6561=0.9477 & \mathbf{0 . 9 4 7 7} \text { or } \mathbf{0 . 9 4 8} \end{array}$	M1 A1 oe A1 [3] (Total 9)
	Notes	
(a)	B1: $\quad \bar{x}=30.8$ may be implied by $1.96\left(\frac{\sigma}{\sqrt{n}}\right)=[31.86-30.8]=1.06$ or $2(1.96)\left(\frac{\sigma}{\sqrt{n}}\right)=31.86$ M1: A correct equation for either a width or a half-width involving a z-value $1.5 \leqslant z \leqslant 2$ Eg: "their $z "\left(\frac{\sigma}{\sqrt{n}}\right)=31.86-" 30.8$ " ft their \bar{x} or $2($ "their $z ")\left(\frac{\sigma}{\sqrt{n}}\right)=31.86-29.7$ or "their $z "\left(\mathrm{SE}_{\bar{x}}\right)=31.86-" 30.8 "$ or $2($ "their $z ")\left(\mathrm{SE}_{\bar{x}}\right)=31.86-29.74$ are fine A1: $\quad 0.54$ or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0 Condone $\bar{x} \pm 1.96 \sigma=\ldots$ for B1 and M1 but A0 even if they say " $\sigma=$ standard error $=0$. Otherwise answer only of 0.54 scores 3 out of 3	$.86-29.74$. 74 for M1. $54^{\prime \prime}$
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \leqslant z \leqslant 1.7$	
(c)	$\begin{array}{ll} \text { M1: } & \text { States or applies either } X \sim \operatorname{Bin}(4,0.9) \text { or } Y \sim \operatorname{Bin}(4,0.1) \\ & \text { Condone M1 for } 0.9^{4}+0.9^{3} \times 0.1 \text { (o.e.) } \\ 1^{\text {st At } 1:} & { }^{4} C_{3}(0.9)^{3}(0.1)+(0.9)^{4} \text { or }(0.9)^{4}+{ }^{4} C_{1}(0.1)(0.9)^{3} \text { oe } \\ 2^{\text {nd }} \mathrm{A} 1: & 0.9477 \text { or } 0.948 \end{array}$	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

